Cloning and Functional Characterization of Key Enzymes in Putative Octadecanoid Pathway of Physcomitrella patens
نویسندگان
چکیده
Jasmonic acid and its metabolites are ubiquitously occurring lipid-derived signaling compounds that regulate growth, development and defense processes in flowering plants. However, their functions in lower land plants have not been well characterized yet. The model moss, Physcomitrella patens is a member of bryophytes and represents a key evolutionary position between green algae and flowering plants. According to the proposed land plant evolution, jasmonic acid signaling pathway has evolved after the evolutionary split of bryophytes and vascular plants, indicating its absence in bryophytes. However, the putative key homologous genes involved in jasmonic acid biosynthesis and its signaling pathway are available in P. patens genome. Allene oxide synthase catalyzes the first committed step of jasmonic acid biosynthesis in flowering plants. A putative allene oxide synthase gene of P. patens was cloned and shown to have the same in vitro function as observed in flowering plants. Moreover, based on substrate specificity, plant 12-oxophytodienoic acid reductases can be classified into two groups, group I and group II, of which only group II isozymes involve in jasmonic acid biosynthesis. Six putative 12-oxophytodienoic acid reductase genes, among which only one represents group II, were identified in P. patens genome. Two 12-oxo-phytodienoic acid reductase genes, which represent group I and group II, were cloned and characterized. Striking results were obtained since the 12-oxo-phytodienoic acid reductase, which represents group II, exhibited group I type activity. This unusual functional property clearly explains why P. patens, probably all the bryophytes, does not contain jasmonic and its signaling pathway though it contains the corresponding homologous genes. Moreover, the ancestral plant 12-oxophytodienoic acid reductases might have possessed group I type activity and early precursors of jasmonic acid might have functioned as signaling molecules in ancestral land plants instead of jasmonic acid.
منابع مشابه
Cloning and characterization of chalcone synthase from the moss, Physcomitrella patens.
Since the early evolution of land plants from primitive green algae, flavonoids have played an important role as UV protective pigments in plants. Flavonoids occur in liverworts and mosses, and the first committed step in the flavonoid biosynthesis is catalyzed by chalcone synthase (CHS). Although higher plant CHSs have been extensively studied, little information is available on the enzymes fr...
متن کاملThe Molecular Mechanism and Evolution of the GA–GID1–DELLA Signaling Module in Plants
Bioactive gibberellins (GAs) are diterpene phytohormones that modulate growth and development throughout the whole life cycle of the flowering plant. Impressive advances have been made in elucidating the GA pathway with the cloning and characterization of genes encoding most GA biosynthesis and catabolism enzymes, GA receptors (GIBBERELLIN INSENSITIVE DWARF1, GID1) and early GA signaling compon...
متن کاملCloning and Characterization of cbhII Gene fromTrichoderma parceramosum and Its Expressionin Pichia pastoris
The genomic and cDNA clones encoding cellobiohydrolase II (CBHII) have been isolated and sequenced from a native Iranian isolate of Trichoderma parceramosum, a high cellulolytic enzymes producer isolate. This represents the first report of cbhII gene from this organism. Comparison of genomic and cDNA sequences indicates this gene contains three short introns and also an open reading frame codin...
متن کاملPpASCL, a moss ortholog of anther-specific chalcone synthase-like enzymes, is a hydroxyalkylpyrone synthase involved in an evolutionarily conserved sporopollenin biosynthesis pathway.
Sporopollenin is the main constituent of the exine layer of spore and pollen walls. Recently, several Arabidopsis genes, including polyketide synthase A (PKSA), which encodes an anther-specific chalcone synthase-like enzyme (ASCL), have been shown to be involved in sporopollenin biosynthesis. The genome of the moss Physcomitrella patens contains putative orthologs of the Arabidopsis sporopollen...
متن کاملA complementation assay for in vivo protein structure/function analysis in Physcomitrella patens (Funariaceae).
PREMISE OF THE STUDY A method for rapid in vivo functional analysis of engineered proteins was developed using Physcomitrella patens. METHODS AND RESULTS A complementation assay was designed for testing structure/function relationships in cellulose synthase (CESA) proteins. The components of the assay include (1) construction of test vectors that drive expression of epitope-tagged PpCESA5 car...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012